C Programming Primer

8/31/15

Objectives

* Develop a functional knowledge of C
programming concepts

 Understand basic variables, constructs, and
control flow statements

8/31/15

Special Notes

* Copying and pasting code from these slides
can be problematic. It is best to look at these
slides and type directly into your
programming environment when developing
your own programs.

8/31/15

What is C?

* Programming language created between 1969
& 1973 by Dennis Ritchie

* Written to create the UNIX operating system

* Popular programming language for malware
authors

8/31/15

Basic Structure of C Program

#include <stdio.h>
int main(void){

printf(“Hello World \n");
return O;

8/31/15

This program will print the
following output to a
console screen:

C:\Windows\:

Hello World
Press

any key to continue

Basic Structure of C Program

#include <stdio.h>

int main(void){

printf(“Hello World \n");
return O;
//End of program

8/31/15

Standard Header Files

Header file contains one or more function
declarations

Gives access to previously created functions

Any number of standard headers can be
included

stdio.h — provides access to various functions
that allow input and output operations

— printf function

8/31/15

Basic Structure of C Program

#include <stdio.h>

int main(void){

printf(“Hello World \n");
return O;
//End of program

8/31/15

Main Function

* Global function that designates the start of a
program

* Every C program must have a main function

* Function may contain slight variations but will
always have following structure

maTin() { b?dy }

Basic Structure of C Program

#include <stdio.h>

int main(void){

printf(“Hello World™);
return O;
//End of program

8/31/15

Print Statement

e printf — Writes C strings to standard output

— printf is a function that is included under the
stdio.h header file

 \n —indicates a newline character

— Not including this on a print statement will print
all statements on the same line

8/31/15

Print Statement Example

#include <stdio.h>

int main(){
printf(“Hello World \n”);
return O;

}

#include <stdio.h> 7 C:\Windows \system32\cmdexe
i . Hello Yorld Press any key to continue . . .
int main(){
printf("Hello World ™);
return O;

8/31/15

Basic Structure of C Program

#include <stdio.h>

int main(void){

printf("Hello World \n”); _

return O;
//End of program

8/31/15

Return Statement

e Returns value from a function after it has been
called

e Value return must be the same as the function
type
e A function can return any type specified in C

— If a function is of type void, it does not return a
value

8/31/15

Basic Structure of C Program

#include <stdio.h>

int main(void){

printf("Hello World \n");
return O;
//End of program

8/31/15 15

User Comments

e Comments are not executed as part of the
program

* Provides clarity as to what is occurring in a
program

 Comments can be noted by // or /* */

8/31/15

Semicolons in C

* Notify C compiler of the end of a statement

 They are used after statements such as:
— printf("Hello, World! \n");
— return O;

8/31/15

Variables

* Name given to a storage area that computer
programs can manipulate

e Different variable types will be able to represent
different types of values

e Variable names can be composed of letters,
digits, and the underscore character

— It must begin with an underscore or letter

e Variablel — Accepted
e Var2 - Accepted
e 13Var3 — Not Accepted

8/31/15

Variables cont...

e Variables are also case sensitive

— Using upper and lower case letters creates
different variables

 Example

— Number
— number
— NumbeR

* The strings above would create three distinct
variables

8/31/15

Variables cont..

Integer Types Floating-Point Types

Storage size Value range Type Storage size Value range Precision

-128t0 127 or 0 to 255 float 4 byte 1.2E-38 t0 3.4E+38 6 decimal places
unsigned char 1 byte 0to 255 double 8 byte 2.3 0 1.7E+308 15 decimal places
signed chat 1 byte 12810127 long double 10 byte to 1.1E+4932 19 decimal places
Int
unsigned int
short
unsigned short

long

unsigned long

8/31/15

Variable Declaration

* Variables can only be declared using valid C
data types

* The general structure is defined below

8/31/15

Variable Initialization

* Variables can also be given a value during
declaration

8/31/15

Variables Example

#include <stdio.h>

Press any key to continue

int main(){
int var = 65;
float var2 = 65;
char var3 = ‘A;

printf(“var %i \n”,var);
printf(“var2 %f \n”,var2);
printf(“var3 %c \n”,var3);

return O;

}

8/31/15

More printf Info

e Cuses formatted output

— The % sign with a character following it designates
a certain format for a variable

Provides integer
variable to use in
print statement

Tells function to
look for integer
value

8/31/15

Local vs. Global Variables

 Local variable- declared inside a function

 Global variable declared outside of all
functions

* Alocal variable can only be used in the
function where it is declared. A global variable
can be used in all functions.

8/31/15

Global/Local Variables Example

#include <stdio.h> [+ C:\Windows)

Ualue of global variable x: 34 !
Ualue of local variabhle y: 10 |
Press any key to continue . . .

intx=17;

int main(){
inty =20/2;
X = X*2;
printf("Value of global variable x: %d\n", x);
printf("Value of local variable y: %d\n",y);
return O;

8/31/15

If Statements

e Statement in C which tells a program what to
execute based on a given condition

* Programs will often check if a variable is
greater, smaller, or equal to another value

If Statement Structure

if (statement is TRUE)
Execute line of code

}

Example of how
statements work.

int x =15;

if (x> 10)
printf(“Greater than ten”);

The variable x is equal to
15. x is greater than 10,
so the print statement
will be executed.

intx =9

if (x 1= 9){
printf(“Not equal to 97);
3}/15

The variable x is equal to
9. Since xisequalto9
the print statement

execute. It only
executes when x is not
equal to 9.

If/Else Statements

 Else statements add more control to how a
program can be executed

* By using else statements additional conditions
can be checked

if (statement is TRUE)X
Execute these lines of code if condition is TRUE

}

elsef
Execute these lines of code if condition is
FALSE

If/Else Examples

void main(){
int x =12;

x is equal to 12. The program

if(x < 19) checks the first if statement.

x <19 is TRUE so it executes the
printf("x is less than 197); first print statement. The else

} statement is not considered

else{ since the if statement was

TRUE.

printf(“x is not less than 197);

8/31/15

If/Else Examples cont..

void main(){
inty = 30;

x is equal to 30. The program
if(x < 19) checks the first if statement.
_ . x < 19 is FALSE. It does not
printf("x is less than 197); enter into the if statement. It
} does enter the else statement
else{ and prints “x is not less than
19”.

printf(“x is not less than 197);

8/31/15

Loops

e Used to perform repeated operations until a
condition is reached

* Like if statements, loops use relational
operators and condition statements to
determine how long to execute

* Here while loops and for loops will be studied

8/31/15

While Loop

* Two components

— Counter modification

8/31/15

while (

it

-Execute lines of code
-Modify variable that affects test condition

it
printf(“Hello”);

x++; /[[Increments x by 1

While Loop Example

#include <stdio.h>

int main(){

int counter=10;

while (counter > 0){
printf("counter is greater than 0\n");
counter--;

}

printf("counter is %d\n",counter);
return O;

ov] C:\Windows)

8/31/15

counter 1s < » than
counter i ~ ~ than
counter i . » than
counter i ~ ~ than
counter is . » than
counter o ~ than
counter is . » than
counter is ~ ~ than
counter is . » than
counter is ~ ~ than
counter is @

0O ®

Press any key to continue . . .

While Loops & If Statements

#include <stdio.h>
int main(){
int counter=10;
while (counter > 0){
if (counter > 5){
printf("counter is greater than 5\n");
}
else{
printf("counter is less than or equal to 5\n");

}

counter--;

}

printf("counter is %d\n",counter);
return O;

While Loops & If Statements

greater
greater
greater
greater
greater
than equal to
than equal to
than equal to
than equal to
is than equal to
is

8/31/15

For Loops

Three components

— Test condition

— Variable modification

; test condition; variable modification){

Code to execute when the test condition is true

8/31/15

For Loop Example

§
é

#include <stdio.h>
void main(){
int X;
for(x=0;x<10;x++){
printf(“x is %i\n”,x);

XXX XXX XXX X]|e
[JTRVRTRTRTRTRTRTRTRT, b
"D G0 AT O U D LI N = ()

WL uwnunn

%]

any key to continue . . .

L
13

8/31/15

Switch Statements

* Helps control complex conditional and
branching operations

* Takes a and test it for equality against
a set of

switch () {
case ;
Code to execute if <variable> == this-value
break;
default:
Code to execute if <variable> does not equal the value following any of the

cases
break;

} 8/31/15

Switch Statement Example

void main(){
inta=10;
constintb =10;
const int ¢ = 20;

switch (2) {

case
printf(“a equals b”);
break;

case
printf(“a equals c”);
break;

default:
printf(“Execute default case”);
break;

}

} 8/31/15

T+ C:\Windows

a equals b

Press any key to continue . . .

Array Data Structures

e Cdata structure that stores a fixed size
sequential collection of elements

* Can be thought of a collection of variables of
same type

* Parts of the array can be accessed via an index

8/31/15

Array Example

int number[5];
number[0]=5;
number[1]=0
number[2]=17;
number[3]=81;
number[4]=52;

Index Positions
Every array starts at index 0

8/31/15

Array Examples

C:\Windows\system32),

#include <stdio.h>
void main(){
int numbers[10];
int X;
for(x=0;x<10;x++){
numbers[x]=x;
printf(“Value is %i\n”,numbers|x]);

cCocCcCcCccccca
=T =T+ T < = T« T < TR« T - TR =)
o ol et e e e e o e fed
=3 I I R~~~ i i
OTOODODD®OD®D®®®
QU e e e e el e s e el
OGO NI N U D N (D

S unnunn

y key to continue . . .

8/31/15

Additional Material

e Links for addition material

8/31/15

Summary

* Presented basic C programming constructs

* Discussed basic variables, constructs, and
control flow statements

8/31/15

Questions

8/31/15

